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Abstract. We present here an elementary pedagogical introduction to CPN solitons in quantum Hall
systems. We begin with a brief introduction to both CPN models and to quantum Hall (QH) physics. We
then focus on spin and layer-spin degrees of freedom in QH systems and point out that these are in fact
CPN fields for N = 1 and N = 3. Excitations in these degrees of freedom will be shown to be topologically
non-trivial soliton solutions of the corresponding CPN field equations. We conclude with a brief summary
of our own recent work in this area, done with Sankalpa Ghosh.

PACS. 73.43.Cd Theory and modeling – 12.39.Dc Skyrmions – 05.45.Yv Solitons

1 Introduction

CPN quantum fields were introduced in the mid-seventies
in the particle physics literature as two-dimensional mod-
els which bore important similarities to four-dimensional
Quantum Chromodynamics. It was shown that these field
theories were very interesting in their own right [1]. Among
their important features was the availability of exact soli-
tary wave solutions of prototype CPN models at the clas-
sical level, even though the underlying field equations
were coupled non-linear partial differential equations in
2+1 dimensions. These solutions, obtained through ele-
gant methods, could be written in terms of simple analytic
functions. They were also “topological solitons”, i.e. they
could be classified into homotopy sectors characterised by
a winding number. In real 4-dimensional particle physics
these beautiful solutions remained as theoretical discov-
eries in toy models with no experimental manifestation.
However, subsequently they were shown to be physically
realisable in an entirely different arena of physics, namely,
two dimensional quantum Hall systems.

We present here an elementary pedagogical introduc-
tion to CPN solitons in quantum Hall systems. We be-
gin with a brief introduction to both CPN models and to
quantum Hall (QH) physics. We then focus on spin and
layer-spin degrees of freedom in QH systems and point out
that these are in fact CPN fields for N = 1 and N = 3.
Excitations in these degrees of freedom will be shown to
be topologically non-trivial soliton solutions of the corre-
sponding CPN field equations. We conclude with a brief
summary of our own recent work in this area, done with
Sankalpa Ghosh.
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2 CPN fields

A CPN field is a multiplet of N + 1 complex fields which
are functions of some d-dimensional space-time (which we
will denote by x), subject to two conditions we will list
below. For the present we leave the space-dimensionality
open and later concentrate on the case of 2 dimensions.
This field multilplet can be denoted by a CPN spinor

ησ(x) =




η1(x)
η2(x)
...
...

ηN+1(x)


 · (1)

To qualify as a CPN spinor this multiplet has to obey, at
each point x,

(i) Normalisation:∑
σ

|ησ(x)|2 = 1 (2)

and
(ii) equivalence under local U(1) transformations

(gauge invariance):

ησ(x) ≈ ησ(x)eiΛ(x) (3)

where Λ(x) can be an arbitrary real function of x, but the
same for all the components σ. Altogether then there are
2(N + 1) − 2 = 2N real degrees of freedom at each x.

The system could have any action functional and field
equations as long as they are gauge invariant/covariant
under the U(1) transformations above. Now, typically,
field equations involve gradients of fields. But under the
gauge transformations (3) gradients are not covariant:

∇ησ(x) → eiΛ(x)
(∇ησ(x) + i(∇Λ)ησ(x)

)
. (4)
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However, consider the “covariant derivative”

Dησ(x) ≡ (∇ + iA
)
ησ(x) (5)

where

A(x) ≡ i
∑

(ησ(x))∗∇ησ(x). (6)

One can check that A(x) is real and behaves under the
gauge transformations as

A → A − ∇Λ. (7)

Hence

Dησ(x) → eiΛ(x)Dησ(x). (8)

Using this, we can construct the simplest prototype
CPN energy functional for static configurations

Epro [ησ(x)] = (1/2)
∫

dx
∑

σ

(
Dησ(x)∗

)
·
(
Dησ(x)

)
(9)

yielding coupled non-linear field equations

D ·Dησ(x) + κησ(x) = 0 (10)

where κ is a Lagrange multiplier implementing the nor-
malisation condition in equation (2). This can be viewed
as an equation for static (time-independent) fields in some
d-dimensions. Similarly, in Minkowskian d+1 dimensions,
a CPN field equation would be(

D2
0 − D ·D

)
ησ(x) + κησ(x) = 0 (11)

where D0 = ∂t + iA0.
Equations (9, 10) are the simplest rotationally covari-

ant candidates for the energy functional and the field
equation, respectively, for CPN systems. We may call
them the prototype CPN system. Of course any other
field equation and energy functional for N + 1 complex
fields would also define a CPN system, as long as they are
covariant under the gauge transformations (3) and con-
sistent with the normalistation constraint (2). Indeed the
the CPN systems that appear in QH physics do have more
complicated expressions in their energy and field equa-
tions, although they all include the basic prototype terms
above.

3 Topological solitons in 2 dimensions

Although the prototype CPN field equation equation (10)
is a set of coupled nonlinear partial diffential equations,
an infinite number of exact solutions have been obtained
for them in 2 dimensions. These solutions are furthermore
topological solitons. We will briefly describe them. The
rest of our discussion in this article will be limited to

two space dimensions. As a first step note that the low-
est (zero) energy solutions of equation (10) are the gauge
equivalent family of spinors

ησ(r) = bσeiΛ(r) (12)

where bσ is any constant (space independent) CPN spinor
and where the phase factor eiΛ(r) could be any single val-
ued function. To see this first consider the constant so-
lution (where Λ = 0). Then since ∇bσ = 0, the vector
potential as defined in (6) is also zero. Hence D bσ = 0
and Epro[bσ] = 0. By gauge invariance of the energy, all
members of the gauge class in (12) will also have zero
energy.

Turning to configurations of non-zero but finite energy,
they must asymptotically (as r → ∞) tend to this zero
energy solution:

ησ(r) → bσeiΛ(θ) (13)

where θ is the angular coordinate on the plane. Note
that the angular gradient of such configurations behaves
asymptotically as

∇θησ(r) → 1
r
∂θΛ ησ(r) (14)

which is not square integrable. However, it is not the
plain gradient which occurs in the energy functional (9),
but the covariant gradient, which does vanish sufficiently
fast asymptotically for the energy integral to have a finite
value.

Thus any finite energy configuration corresponds to a
particular function Λ(θ) on the circle at spatial infinity.
This function is clearly a mapping of a circle into a cir-
cle and can be classified by a winding number (the first
homotopy group Π1[S1] is the group of integers). An ex-
plicit expression for this winding number in terms of the
asymptotic behavior (13) is

n =
1
2π

∫
dθ

dΛ
dθ

=
1
2π

∫
d2rεµν(Dµησ(x))∗ (Dνησ(x)). (15)

Exact solutions are available analytically in every
topological sector (i.e. in each class of configurations char-
acterised by a given value of the winding number.) It can
be derived that

ησ(z) = K(z)




1
w2(z)
w3(z)
...
...

wN+1(z)


 (16)

is an exact solution of the field equation (10), where z =
x+ iy, {wσ(z)} are arbitrary analytic functions of z, and
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K(z) is the normalisation factor. For example, it can be
checked that

ησ(z) =
1√

a2 +Nr2n




a
zn

zn

...

...
zn


 (17)

where a is any constant, is an exact solution. As r → ∞,
it behaves as

1√
N

einθ




0
1
1
...
...
1


 (18)

and clearly has a winding number n in its phase.
These exact solutions are for the prototype CPN

model (10). A realistic physical system describable by a
CPN field will in general have a more complicated energy
functional and field equation. But for most such physi-
cal systems such as those which appear in the quantum
Hall phenomena, the lowest energy solution is still a space-
independent spinor. Therefore localised finite energy soli-
tons will still obey the asymptotic condition (13) and be
characterised by the same winding number. Lastly, while
we have presented here only static solutions in 2 space
dimensions, time-dependent moving soliton solutions of
equation (11) can be obtained by boosting.

For a more detailed review of CPN solitons see refer-
ence [2].

4 Quantum Hall systems

Since our subject deals with CPN solitons in Quantum
Hall (QH) systems, we would like to give some sort of an
overall introduction to the latter for those who may need
it. This is a vast subject. Further, the basic phenomena
referred to as the Quantum Hall effect (QH) are widely
known. Therefore, even though we will begin from the
beginning, our overview will be channelised to focus only
on those of aspects this system which form pre-requisites
to understanding its CPN excitations.

Recall the classical Hall problem of electrons moving
in the xy-plane confined in the ŷ direction by boundaries,
and in the presence of crossed electric and magnetic fields
E = Exx̂ and B = −Bẑ respectively. As the electrons
begin to move in the x-direction because of Ex, the
Lorentz force due to the magnetic field will push the
electrons towards the y-boundary where they accumu-
late and produce a transverse electric field Ey ŷ which
eventually balances the Lorentz force vB/c. As a result
the electrons end up moving purely along the x̂ direction
although the total electric field is E = Exx̂ + Ey ŷ. The
electric current can be written as j = σ · E where σ is
the conductivity matrix which can be easily calculated
using the Drude formulae. Its diagonal elements are
σxx = σyy = ne2τ/µ (where µ is the electron

mass, τ is the collision time, and n is the electron
density). Its off-diagonal element, the Hall conductivity,
is given by σxy = nec/B. In terms of the “filling factor”
ν defined as the ratio of the density of electrons to fluxons,

ν ≡ n

B/φ0
(19)

where φ0 = hc/e is the unit of flux, the Hall conduc-
tivity can be written as σxy = (e2/h)ν. These expres-
sions for the conductivity tensor were obtained for the
simplest possible situation, that of non-interacting clas-
sical planar electrons in a perpendicular magnetic field.
Electrons in real macroscopic experimental samples are
much more complicated. They interact with one another,
with the ions in their environment, and obey the rules
of many-body quantum mechanics. One would expect the
behaviour of their conductivity to be quite complicated
and messy in general, as compared to the simple results
above. But when Hall effect experiments were done on ex-
ceptionally pure samples of 2D electron gas at very low
temperatures and very high magnetic fields, it was found
that the Hall conductivity σxy as a function of the filling
fraction ν revealed a startlingly simple pattern. It con-
tained, as a function of ν, a series of extraordinarily flat
plateaus, with a flatness accurate to better than 1 in 107.
These plateaus were first found to occur at integer filling
fractions with Hall conductance values quantized to be the
same integer in units of e2/h. Furthermore, at those filling
fractions where σxy had plateaus, the diagonal resistivity
ρxx was found to be zero. These phenomena were called
the Integer QH Effect (IQHE). Subsequently, in experi-
ments involving higher magnetic fields and higher mobil-
ity samples, the same phenomenon of plateaus in σxy and
of vanishing of ρxx was also found at fractional values of
the filling factor. These fractions (with one exception, still
only partially understood) corresponded to odd integers in
their denominator. This is often called the Fractional QHE
(FQHE).

We will concentrate here on the particular case of ν = 1
where the CPN solitons of interest to us appear. Fortu-
nately, this is also the value of ν at which the physics of
QH effect is most easily understood. Let us again start
with non-interacting electrons in a transverse uniform B
field, but now we treat it quantum mechanically and worry
about the effect of interactions later. This problem, solved
fully and exactly long ago by Landau, is a now a standard
textbook problem in quantum mechanics (see for exam-
ple [3]). The results in brief are as follows. The system
can be mapped into a pair of harmonic oscillators, one
with frequency zero and the other with ω = ωc ≡ eB/µc.
Excitations of the latter lead to energy levels

En = (n+ 1/2)�ωc. (20)

These are the famous Landau levels. Each level is highly
degenerate, corresponding to excitations of the other os-
cillator which has zero-frequency. The degenerate states
lying in the lowest Landau level (LLL) have wavefunctions
(in the symmetric gauge) of the form

φm = zme−|z|2/4l2 (21)
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where z = x + iy, l2 = �c/eB and the integer m ranges
from zero to infinity.

The degeneracy is formally infinite for an infinite
plane, but on a finite sample it can be shown to be equal
to the number of fluxons Ndeg = BA/φ0 where A is the
area of the sample. Therefore when the filling fraction as
defined in (19) is unity, the total number N of electrons
exactly equals the number of states in the LLL. Conse-
quently, at unit filling, the ground state of the system will
correspond to electrons occupying all the states of the LLL
and leaving all higher Landau levels empty. The system
clearly has an energy gap equal to �ωc = �eB/µc, which
is very large for large magnetic fields. (It is this large gap
and the associated incompressibility that is responsible
for the occurance of the Hall plateaus at ν = 1. But we
do not digress to present that explanation here since we
would like to rapidly progress towards CPN solitons.)

Next consider the wavefunction of that ν = 1 many-
body ground state, still staying within the non-interacting
approximation. It will be a Slater determinant of all the
one-electron states in the LLL given in (21). Apart from
the Gaussian factor in each state, this is a determinant of
polynomials in z, which is just the Vandermonde determi-
nant and can be rewritten in the Jastrow form. Hence

Ψν=1 = Πi<j (zi − zj) exp

(
−
∑

i

|zi|2/4l2
)
. (22)

This is the famous Laughlin wavefunction for the ν = 1
ground state. We have derived it only in the non-
interacting approximation. But Laughlin has suggested
that this wavefunction would be a very good approxi-
mation even when interactions of the electrons with one
another and with impurities are taken into account. The
reason for this is that this wavefunction already possesses
many of the desired features of the exact wavefunction.
It is antisymmetric, as required by the Pauli principle.
It is an eigenfunction of the total angular momentum, as
befits the ground state of a system which is circularly sym-
metric. It vanishes whenever two electrons coincide — a
feature that will reduce all pairwise Coulomb energies. Fi-
nally, in the presence of interactions, one would expect
the ground state to contain some admixture also of states
fronm the higher Landau levels. But in the limit of very
large magnetic fields, the energy gap e�B/µc is so large
that such admixture will be small. These arguments sug-
gest that the Laughlin wavefunction will be robust even in
the presence of interactions. Indeed, the Laughlin wave-
function has been found to be in excellent agreement with
numerical calculations.

5 Spin excitations

The arguments in the preceding section were incomplete in
that the spin degrees of freedom were not considered in the
discussion. Even though the electrons are treated as two-
dimensional with respect to their coordinates, they are
physical 3-dimensional electrons and do carry spin. The
spin part of the wavefunction has to be specified. Now,

the Pauli principle requires antisymmetry of the entire
wavefunction including spin. But the Laughlin wavefunc-
tion (22), which seems to be a very accurate approxima-
tion to the correct wavefunction, is already antisymmetric
in the coordinates zi. Therefore the spin part, suppressed
in equation (22), must be fully symmetric. That is, all
the electron spins must be polarised in the same direc-
tion. Thus the QH ground state at ν = 1 is a ferromagnet
for the same reason that usual magnets are, viz., to min-
imise the exchange Coulomb energy. Given that there is a
magnetic field along the z-direction, one expects the po-
larisation to be in the same direction.

Although the magnetic field is very strong, its cou-
pling to the spins is not prohibitively large because of the
effective g-factor for electrons is reduced in the layer sand-
wiched between the two semiconductors. As compared to
the value of 2 for free electrons in vacuum, it can be as
low as 0.4 here. Of course that is sufficient to align all
spins along the B field in the ground state, but excited
states are possible at reasonably low energy where some
spins point away from the z-direction. Indeed one would
expect that the low energy excitations of the system can
be described solely by various spin textures, with the co-
ordinate part of the wavefunction still remaining in the
LLL since any admixture with higher Landau levels will
be very expensive energetically.

Thus the low energy dynamics of the ν = 1 system can
be studied by going to the continuum limit and treating
the system as a two-dimensional field of unit vectors m(x)
at each point, describing the direction of the spin at that
point. This field of unit vectors has a long history under
the name of the nonlinear O(3) model. But it is also just
a CP1 field (see [2]). Given a general CP1 spinor denoted

by ησ(r) =
(
α(r)
β(r)

)
, the quantity m ≡ 〈η|σ|η〉, where σi

are Pauli matrices, will be a unit vector. Thus a CP1 field
is also a unit vector field. The homotopy classification for
CPN discussed in Section 2 can also be recast, for N = 1,
in terms of the unit vector field m(r). The boundary condi-
tion (13) on ησ(r) corresponds to having the unit vector m
take the same value everywhere on the boundary of two-
dimensional space, which can be therefore compactified
into a 2-sphere. Hence any such field configuration m(r)
is a mapping of the 2-sphere S2 in coordinate space into
the 2-sphere of spin directions. These mappings S2 → S2

are again classified by a winding number. These configu-
rations are two-dimensional analogues of four-dimensional
configurations studied long ago by Skyrme (see [2] for ref-
erences), and are called skyrmions.

As we have already mentioned exact solutions in all
topological classes are available for prototype CPN mod-
els in two space dimensions for all N . In the case of the
nonlinear O(3) model, its skyrmion solutions had already
been discovered by Belavin and Polyakov before its gener-
alisation to CPN models had been developed [4]. Turning
to QH systems, Sondhi et al. [5], in a very interesting
paper, showed that not only can these exotic skyrmion
excitations occur at ν = 1, but that they are in fact
the lowest energy excitations, lower in energy than single
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spin-flips. Subsequently experimental support for the ex-
istence of such skyrmionic (CP1) excitations was also
found [6].

6 Psuedo(layer)spin in QH systems

Following the spectacular quantum Hall results for elec-
trons in a layer, more complicated experiments were done
using samples that contained two parallel layers of elec-
trons [7]. Some more interesting results emerged. One
would expect of course to see results where the system
behaves as a simple additive sum of each layer. Thus one
would expect to see quantum Hall plateaus at total filling,
in both layers together, of νtotal = 2 or νtotal = 2/3 corre-
sponding to the observed single layer plateaus at ν equal
to 1 and 1/3 respectively. Indeed this is what is seen when
the layer separation d is large. But when d is reduced to
about 3l, quantum Hall plateaus appear at total filling
νtotal equal to unity. The electrostatic capacitance energy
between the two layers would require them to have equal
densities of electrons which corresponds to a filling of 1/2
in each layer. But no quantum Hall effect is seen in mono-
layers at ν = 1/2.

Therefore this plateau at νtotal = 1 clearly cannot be
understood by thinking of the system as a pair of in-
dependent layers. Rather, the phenomenon must reflect
some sort of a quantum coherence between the two layers.
An ingenious formulation for understanding this, devel-
oped by Girvin, Macdonald and co-workers is to associate

a normalised 2-component layer-spin or pseudospin
(
α
β

)
to each electron [8]. These components α and β give the
amplitude for the electron being in the upper and lower
layers respectively. Let us for the moment suppress real
spin and see what the occurrence of the plateau means
for the pseudospin. As we mentioned earlier, a ν = 1 Hall
plateau is well described by the antisymmetric Laughlin
wavefunction (22). If this should also hold for the double
layer, then the Pauli principle requires that the pseudospin
of the electrons should be fully symmetric, i.e. the sys-
tem must be a pseudospin ferromagnet similar to (and for
the same exchange-energy-reducing reasons as) the real
spin ferromagnetism. Further, if there is even the smallest
tunnelling probability between the two layers, the ground
state will be a symmetric superposition of the two layers,

i.e., be in the pseudospin state
(

1/
√

2
1/

√
2

)
. In other words

the pseudospin magnet will point along the x-direction.
This again is similar to the real spin magnet pointing along
the z-axis because of its Zeeman coupling to the magnetic
field. The tunnelling term in the Hamiltonian will act as
the analogue of the Zeeman coupling for the pseudospin.

With the ground state being a ferromagnet in layer
space, once again the system will carry low energy ex-
citations corresponding to different peudospin textures.
Asymptotically they will have to go to the ground state
value, along the x-direction, but in the interior one could
have any smooth configuration of direction vectors. Once

again we have an O(3) or CP1 field in compactified 2-
space, giving rise to a topological classification of all so-
lutions by a winding number. Such topological solutions,
called bi-merons in this context, were first discussed in
detail by Moon et al. [9]. Ghosh and I have also studied
these solutions and evaluated their detailed profiles and
energies [10].

7 Spin-pseudospin intertwined CP3 solitons

Now let us add on spin degrees of freedom to the pre-
ceding discussion of double layer systems. The full Hall
fluid ground state at νtotal = 1 will be ferromagnetic in
both spin and pseudospin, with a coordinate dependence
given by the Laughlin wavefunction. The combined spin
and pseudospin part of the wavefunction can be described
by a 4-component multiplet:

ησ(x) =



η1(x)
η2(x)
η3(x)
η4(x)


 (23)

where the spin-pseudospin index σ = 1, 2, 3, 4 corre-
sponds to amplitudes that the electron is in the upper-
layer up-spin, upper-layer down-spin, lower-layer up-
spin and lower-layer down-spin states respectively. Such
4-components spinors were first studied in QH systems by
Arovas et al. [11] and by Ezawa [12]. Since these prob-
abilites must add up to one, the spinor has to be nor-
malised and looks like a CP3 spinor. But that requires the
further restriction that the spinor be defined only modulo
a local gauge transformation common to all four compo-
nents. This in turn requires that the energy functional of
the spinor field enjoy a corresponding gauge invariance.
Ghosh and I [13] ensured that this was so by calculating
the energy of this 4-component field starting from the mi-
croscopic Hamiltonian, following the procedure used by
the Indiana group [8,9] for the purely pseudospin case.
Let us summarise how this is done. We work in the second
quantised formalism in terms of the 4-component electron
field ψ†

σ(r).
The microscopic Hamiltonian is

H =
∑
σ,δ

∫
drψ†

σ(r)
(
g̃σ̂z − tτ̂x

)
σδ
ψδ(r)

+
1
2

4∑
σ1,σ2=1

∫
dr1dr2ψ

†
σ1

(r1)ψ†
σ2

(r2)

×V σ1σ2(r1 − r2)ψσ2(r2)ψσ1(r1). (24)

In the above, the Coulomb potential V σ1σ2 depends on
whether the particles are in the same layer or different
layers, σ̂z and τ̂x are spin and pseudospin matrices suitably
generalised as 4 × 4 matrices on the outer product space
of spin and pseudospin, and g̃ and t are the Zeeman and
tunnelling couplings. (The kinetic term (in the presence
of the B field ) can be suppressed for our purposes since
our excitations involve only LLL states all of which carry
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the same constant energy of �ωc/2.) The field-theoretic
state vector corresponding to any given spin-pseudospin
texture η can be written as

| Ψ〉 =
∏
X

[∑
σ

C†
σXησ(X)

]
| 0〉 (25)

where | 0〉 is the vacuum (no electron) state, X stands
for Landau gauge orbitals and ησ(X) is an orbital- de-
pendent 4-spinor. The energy functional for a given spin-
pseudospin texture is then obtained to leading order by
evaluating the expectation value of the Hamiltonian (24)
in the state (25). The result, upon following the same steps
as pionerered by the Indiana group [8,9], is

E[aσ] =
1

2πl2

∫
dr
[
g̃

(
|a1|2 − |a2|2 + |a3|2 − |a4|2

)

−t
(
a1a

∗
3 + a2a

∗
4 + h.c.

)]

+β
∫

dr(|a1(X)|2 + |a2(X)|2 − |a3(X)|2 − |a4(X)|2)2

+2ρs

∫
dr
[ ∑

i=1,4

(∂µa
i∗(r)∂µai(r))+

∑
i=1,4

ai∗(r)∂µa
i(r)2

]

+(ρd − ρs)
∫

dr
[
a1a3∗∇2(a3a1∗) + a1a4∗∇2(a4a1∗)

+a2a3∗∇2(a3a2∗) + a2a4∗∇2(a4a2∗) + h.c.
]

(26)

where the constants β, ρd and ρs are calculated from the
direct and exchange Coulomb energies.

Note that the third term in the energy functional (26)
is just the protoype CP3 energy in (9). Our full expression
for the energy is more complicated. It can however be no-
ticed that all the other terms are also gauge invariant un-
der the U(1) transformations (3). Therefore we are dealing
with a CP3 theory. All the general discussion given earlier
for CPN theories apply. Topological soliton solutions can
be obtained for the field equations which in turn can be
derived by extremising the energy (26).

Explicit soliton solutions have been obtained by
us [13], by numerically solving the coupled nonlinear
partial differential equations that arise when (26) is ex-
tremised. In particular we concentrated on interesting new
topological CP3 solitons where the spin and pseudospin
intertwine non-trivially. For example, the very simple
texture

A




λ
z − b

0
z + b


 (27)

corresponds to a spin-skyrmion in the upper layer and
also a “bi-meron”in the layer spin of the down-spin com-
ponent. This simple ansatz will of course not satisfy the
full field equations. But we have obtained numerical solu-
tions with similar intertwined spin-pseudospin topology.
Lack of space here does not allow us to describe in detail

these solutions. Readers interested in their detailed profile
as well as the numerical methods used are referred to [13].

We have also calculated the energy of these solutions
and minimised it with respect to the parameters in the
ansatz. The resulting cost of creating a pair of such topo-
logically intertwined spin-pseudospin excitations works
out to be about 1.2(e2/εl) as compared to particle hole
excitations which cost about 1.25(e2/εl). That the former
energy is a little smaller is not to be taken seriously, given
the various approximations that have gone into our energy
calculations. All one can say is that it is possible that our
topological CP3 excitations may well be the lowest in en-
ergy, but to be sure of this one must make longer and more
precise calculations.

It is a pleasure to thank the organisers of the GIN 2001 confer-
ence, especially Professors Radha Balakrishnan and Vladimir
Gerdjikov, for their kind invitation and very warm hospitality.
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